

Oil & Gas Gathering, Upstream and Midstream Pipelines.

Increase Productivity and Save your Time Twice with PASS/START-PROF 4.84

Dr. Alex Matveev, START-PROF Product Owner

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

PASS/START-PROF

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE Smart Pipe Stress Analysis & Optimal Sizing

Presenter:

Dr. Alex Matveev START-PROF Product Owner

Development, Training, Support of START-PROF Since 2005

matveev@passuite.com

LinkedIn: <u>linkedin.com/in/alex-matveev/</u>

Webinar Agenda – Part 1

Introduction

- Quick introduction of PASS/START-PROF
- Supported codes for pipelines
- Underground and aboveground pipeline modeling abilities
- Soil pipeline interaction and analysis
 - Soil model for dry and liquefied soil. Submerged pipelines. Buoyancy
 - Soil model for horizontal, inclined, vertical pipelines
 - Restrained and unrestrained zones automatic analysis
 - Seismic wave propagation analysis
 - · Soil subsidence, frost heaving, landslide, seismic fault crossing
 - Natural arch of collapse phenomena, horizontal directional drilling
 - Ring bending calculation using nonlinear FEA

Webinar Agenda – Part 2

PASS/START-PROF features and usability

- Object-oriented piping model creation principle
- Piping object types: pipe, tees, bends, reducers, etc.
- Equipment objects: Tank Nozzle, Pump, Compressor
- Expansion joint objects
- Databases, wind, ice, snow, seismic loads
- Pipe and fittings wall thickness calculation
- Operation mode editor. Load cases
- Analysis reports: Stress in piping, Stress in insulation, Seismic stress, Flaw stress, Restraint loads, Equipment loads, Displacements, Expansion joints check, variable spring selection, constant spring selection, buckling analysis, flange leakage
- Special features

PASS/Start-Prof

Comprehensive pipe stress, flexibility, stability, and fatigue strength analysis with related sizing calculations

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Quick Pipe Stress Analysis & Optimal Sizing

- Broad Applicability
- Unsurpassed Usability
- Powerful Capabilities
- Extensive Databases
- Flexible Configurations
- Extensive Code Support
- Widely Used

PASS/Start-Prof | Broad Applicability

- Process Industry Piping
- Oil and Gas Pipelines
- Utility Network Pipelines
 - District Heating
 - Natural Gas
 - Water
- Power Generation Piping

PIPING AND EQU

PASS/Start-Prof | Broad Applicability

- Developed since 1965
- 2000+ Active users (companies). Licenses 8000+
- User interface and documentation languages: English, Chinese, Russian
- Piping codes: 32
- Wind, Seismic, Snow, Ice codes: 18

PASS/Start-Prof | Our Customers

PASS/Start-Prof | Features

- Increase your Productivity and Save your Time
- Save your Money (we have a friendly pricing policy)
- Increase the Accuracy of Pipe Stress Analysis

PASS/Start-Prof | Features

- First hand quick response from experienced piping engineers in UK, China, Mexico, Brazil, Australia, Egypt, Turkey and others
- Direct support from developers via e-mail is available
- Easy to learn, fast and simple to work with for a new pipe stress analyst
- Due to intuitive modern object-oriented user interface, you can start working immediately. Companies can put PASS/START-PROF into application immediately after purchase, significantly reducing costs and save the time without compromising on the quality of end results

PASS/START-PROF is a part of PASS Suite:

- PASS/START-PROF Pipe Stress Analysis Software
- PASS/HYDROSYSTEM Piping hydraulic and Thermal Analysis Software
- PASS/ NOZZLE-FEM Nozzle to Shell Junction Finite Element Analysis Software. Calculate SIF, k-factors, Nozzle Flexibility and Stress Analysis, etc.
- PASS/EQUIP Pressure Vessel, Column, Heat Exchanger, Tank Design and Analysis Software

PASS/Start-Prof | Increase Productivity

PASS/START-PROF is a Professional Modern Pipe Stress Analysis Software

PASS/START-PROF Makes Complex Things Simple

You will Get the Same Result, but Faster and Easier

ANALYSIS & SIZING SUITE

PASS/Start-Prof |How START-PROF Saves your Time

Time to Create the Model

 Time to Analyze and Optimize the Model
 Time to Create the Report

PASS/Start-Prof | Supported Codes

PASS/START-PROF can analyze piping according to 32 piping codes. The software contains all needed and latest codes for pipelines analysis:

- ASME B31.4 + Ch. IX, Ch. XI
- ASME B31.8 + Ch. VIII
- ASME B31.12
- CSA Z662-19 + Ch.11
- BS PD 8010-1
- BS PD 8010-2
- GB 50251
- GB 50253

- SNIP 2.05.06-85
- SP 36.13330.2012
- GOST P 55989
- GOST P 55990
- SP 284.1325800
- SP 33.13330

PASS/START-PROF has professional analysis abilities needed for Process and Power Piping Stress Analysis:

- Nonlinear analysis of gaps, friction, one-way restraints, rotating rods, etc.
- Special algorithm that improves the nonlinear model convergence on-the-fly without manual tuning (gaps and one-way restraints cycling, friction force cycling etc.). We receive from users the models that didn't converge, put it into our collection and continuously improve that algorithm for past 55 years. It allow to achieve convergence in 99.9% models
- Nozzle, tee, bend flexibilities and SIF (Code, ASME B31J, WRC 537/297, PD 5500, FEA)
- Nozzle, pump and other equipment automatic checks (API, ISO, NEMA standards)
- Optimal automatic variable and constant spring selection using manufacturers catalogue

PASS/START-PROF calculates the cold state after cooling down from the hot state. It allows to get more realistic expansion stress range

Automatic generation of a wind, snow, ice, seismic loads according to 18 national codes

The Properties ×			Project Settings AntiSymmetric1.ctp	
Pipe	117-118	Pipe is Buried	Comme Additional Coincie MRad Course Inc. Others Descention	
Name			General Additional Seismic Wind, Show, Ice Other Dynamic	
(Balan	Red Street 180	ad From Inc.	Snow Loads	
Main Additional Wind, Show, ice			Don't Apply Snow	
Elevation	Outer Clameter	<u></u> m	Ground Snow Load SP 20, 13330, 2016 (Russia) Type SUS *	
Elevation	of End Node		Exposure factor, C ASCE 7-16 (USA)	
Care Ch	man Fandar		Importance factor, EN 1991-1-3-2003+A1-2015	
There al	ape Factor	1	IBC 2012 (International) Ice Loads EN 1991-1-3 2009 (Belarus)	
Security 1	opensuera	0.004	Code KBC 2016 (Korea)	
SERVIN SDR	No ridero Ludu	states types	Importance factor, Is 1 Load Type SUS -	
ice Ship	e Factor	0.6	Hill Shape No Hill Wind Exposure B	and the second s
ice Load		7,49763630 ×gr/m		
Correlation	n Factor calc factors ection Number ad X 0 Y 0 Z 0	T Wind N1 4.70342237 kgf/m kgf/m kgf/m	Wind Loads Code CFE 2008 (Mexico) < 1: 1 > Add Delete Wind Direction +X Wind Direction +X • Parameter • • Basic Wind Speed, V0, m/s 0 • Outdoor Temperature, s, °C 0 • Altitude, hm, m 0 • Surface Roughness, hr, mm 0 • Total Structure Height, Zt, m 0 • Terrain Category 1 •	$F_{i} = \frac{q}{g} A_{i} = m_{i} A_{i}$
	UN	Cencel Prep	Oix Cancer hep	
6	PA	SS PIPING A ANALYSI	AND EQUIPMENT S & SIZING SUITE	

PASS/START-PROF + PASS/HYDROSYSTEM Allows to Water Hammer Surge Analysis

- 3D piping Models converted automatically from START-PROF to HYDROSYSTEM and back
- 3D loading is converted simultaneously for all nodes in the system at the same moment of time

The main goal of dry soil model is to save on the number of supports in whole model to increase analysis speed without loss of result accuracy

Zone #1: Lateral bearing zone (unrestrained) with the length of Lb. Four supports are placed at equal distance

Zone #2: Axial sliding zone (unrestrained) with the length of La. Four supports are placed at a distance increasing exponentially from zone #1 to zone #3

Zone #3: Restrained zone. Supports are placed at 100D spacing, where D - pipe external diameter

Zone #1: Lateral bearing zone (unrestrained) with the length of Lb. Four supports are placed at equal distance

Zone #2: Axial sliding zone (unrestrained) with the length of La. Four supports are placed at a distance increasing exponentially from zone #1 to zone #3

Zone #3: Restrained zone. Supports are placed at 100D spacing, where D - pipe external diameter

It is possible to manually increase the condensation of soil springs to increase the result accuracy:

Two Long Radius Bend Objects:

- Long radius pipe bend
- Prestressed pipe bend

Prestressed pipe bend – Initial elastic bend curvature in vertical and horizontal plane

The weight of pipeline, insulation and product is automatically removed to avoid the huge deflections in 100D pipe spans (zone #3).

This the sum of pipeline, insulation, and product weights is used to calculate the soil springs properties including the friction force.

But if you will add the heavy valve on buried pipeline, the weight of the valve will be considered and you will see the deflections:

Also you can add the buried supports. It doesn't affect the accuracy of the soil model:

ASME B31.4, B31.8, CSA Z662, B31.12PL, BS PD 8010 codes divide pipes into Restrained and Unrestrained

Bourdon Effect in PASS/START-PROF:

1) Pressure thrust forces applies at the ends of each pipe

 $N_{cap} = P\pi (D - 2t)^2/4$

2) Pipe shortening due to pressure load added

If you have the pipeline with zero thermal expansions, <u>you will still get the support</u> <u>loads and displacements</u> caused by pressure Bourdon effect!

Bourdon effect is always activated in PASS/START-PROF to avoid human mistakes when users forget to activate it. It is non-disabling function!

It changes results significantly for:

- High pressure piping and pipelines
- Plastic piping (PE, PP, PB, PVC)
- FRP/GRP/GRE piping

Unrestrained Pipe

If axial force already contain pressure thrust force (Bourdon effect), then stress check can be done by the following equation:

$$S_a = \frac{M}{Z} + \frac{N}{A} \le S_{Allow}$$

PD/4t should be removed. Bourdon effect automatically gives you this value!

Restrained Pipe

$$N = -\alpha \Delta T E A + 2\nu \frac{\pi P (D - 2t)^2}{4} \approx -\alpha \Delta T E A + \nu S_h \cdot A$$

$$S_a = \frac{N}{A} = -\alpha \Delta T E + 2\nu \frac{P (D - 2t)^2}{D^2 - (D - 2t)^2} \approx -\alpha \Delta T E + \nu S_h$$

$$S_a = -\alpha \Delta T E + \nu S_h + \frac{M}{Z} + \frac{N}{A} \leq S_{Allow}$$

If axial force already contain pressure thrust force (Bourdon effect), then stress check can be done by the following equation:

$$S_a = \frac{M}{Z} + \frac{N}{A} \le S_{Allow}$$

We got the same equation as for unrestrained zone!

If axial force already contain pressure thrust force (Bourdon effect), then stress check can be done by the following equation:

$$S_a = \frac{M}{Z} + \frac{N}{A} \le S_{Allow}$$

The same equation as for restrained and unrestrained zone! More detains in my articles:

https://www.passuite.com/kbase/doc/start/WebHelp_en/index.htm#t=RestrainedPipe.htm https://whatispiping.com/restrained-and-unrestrained1 https://whatispiping.com/restrained-and-unrestrained2
In fact, most of long pipelines has restrained and unrestrained zones and virtual anchors We need to find the position of the each virtual anchor in the pipeline system?! For each value of temperature (operating mode)?! Manually?!

PASS/START-PROF Offers 3 Options to Solve this Problem 1) Manual Selection of Restrained/Unrestrained Zones

2) Autodetect Function. Automatically selects the type of zone for each pipe $\frac{F/A}{-E\alpha\Delta T + vS_{\nu}} > 0.975$

3) Smart start check. The best solution. As START-PROF always consider the Bourdon effect, then we can use the <u>more general equations</u> to check stresses

ASME B31.4 code 402.6.2 Unrestrained Pipes from Sustained Loads

ASME B31.4 code 402.6.1 Restrained Pipes from Operating Loads (Sustained+Expansion) $S_L = S_E + vS_H \pm \frac{M}{A} + \frac{F_a}{A} \le 0.9S_y$ $S_{eq} \le 0.9S_y$ $S_L = \pm \frac{M}{A} + \frac{F_a}{A} \le 0.9S_y$

Start smart check equations does not contradict the original requirements of the code! If pipeline failed the "Start Smart Check", then it will fail the original code check too!

But this feature allows to forget about Restrained/Unrestrained Zones, Virtual Anchors. Just Draw the pipeline and run analysis

Original ASME B31.4 Requirements

ASME B31.4 + 2	Start Smart	Check
----------------	-------------	-------

Element		Sustaii S1	ned, L US	1	<u></u>	Operat O	ion, L2 PE		Exp	exp	Test, L10		
	Seg	allow	SL	allow	Seg	allow	SL	allow	SE	allow	SI	allow	
6		0			Onsl	hore Pipel	ine			2			
Pipe/R	-	-	-	12	Seg	0.95 _v	SL	0.9Sy	SE	0.9Sy	SL	0.9Sy	
Fitting/R			•			(*)				-			
Pipe/U	•	· •3	SL	0.75Sy		3.#C		(• S)	SE	S _A	SL	0.85y	
Fitting/U	. •		SI	0.75Sy			•		SE	S _A	SL	0.85 _y	
						Raiser			11.00	<u></u>			
Pipe/W		•	SI	0.85 _v		100			SE	0.85 _v	S,	0.95	
Fitting/W		. •	SI.	0.85 _v			•		SE	0.85 _v	SI	0.95 _y	
	· · · ·			0	ffshore	Pipeline (Ch. IX)					
Pipe	Sea	0.9Sv	IS, I	0.8Sv	Sea	0.95 _y	15,1	0.8Sv		•		-	
Fitting	Seg	0.9Sy	SL	0.85y	Seg	0.95 _y	ISLI	0.8Sy		-	-	-	
					Slurry	Pipes (Ch	. XI)						
Pipe/R	-	1.120			Seg	0.95 _v	S ₁	$0.9S_{y}$	SE	0.9S _v	S,	0.95	
Fitting/R	-	•	•				-		-		-	-	
Pipe/U	1.00		SL	0.75Sy		3.0	•	. •	SE	SA	SL	0.88Sy	
Fitting/U	•		SL	0.75Sy		0.00	•	•	SE	SA	SL	0.88Sy	

Element		Sustaii SU	ned, L JS	1		Operat OI	ion L2 PE		Ex	pansion, L9 EXP	Test, L10		
CALACCES MILES AND	Seq	allow	S_L	allow	Seq	allow	S _L	allow	SE	allow	S_L	allow	
	1				Onsl	nore Pipeli	ne						
Pipe	-	-	SL	$0.75S_{y}$	Seq	$0.9S_y$	S _L	$0.9S_y$	SE	$0.9S_y S_A$	SL	$0.8S_y$	
Fitting	Ξ.	1940	SL	$0.75S_{y}$					S_E	S _A	SL	0.8S _y	
		2				Raiser	Ċ. Č						
Pipe	-	-	SL	0.8Sy	Seq	$0.9S_y$	S _L	$0.9S_{y}$	SE	0.8Sy	SL	$0.9S_{y}$	
Fitting	×	1. - 1	SL	0.8Sy		-	-		SE	0.8Sy	SL	0.9Sy	
·			- 11 - 143-240 	0	ffshore	Pipeline (Ch. IX))	- 940).				
Pipe	Seq	$0.9S_y$	$ S_L $	$0.8S_y$	Seq	$0.9S_y$	$ S_L $	$0.8S_y$	-	-	-	-	
Fitting	Seq	$0.9S_y$	$ S_L $	$0.8S_y$	Seq	$0.9S_y$	$ S_L $	$0.8S_y$	-	-	-		
				9000.	Slurry	Pipes (Ch	. XI)		35				
Pipe	-	2 4	S_L	$0.75S_{y}$	Seq	$0.9S_y$	S _L	$0.9S_y$	SE	$0.9S_y$	S_L	0.88Sy	
Fitting	-		S_L	$0.75S_{y}$	•	11	-	170	S_E	S _A	S_L	0.88Sy	

Soil Model for Submerged Buried Pipelines:

- Soil springs are placed every 5D
- The weight of pipeline, insulation and product is not removed to get the accurate results with the ballasting
- Ballasting weight objects can be added
- Water Buoyancy Considered Automatically
- Liquefied Soil Properties are taken into account automatically

Ballasting Weight Object Lake/river crossings

Drowning With Ballasting Weights

PASS/START-PROF has a very powerful and detailed, but easy to use and fully automatic soil model. Software user's manual work is reduced to minimum.

It can easily deal with the pipelines buried in the dry soil, submerged in the liquefied soil, considering the expansion cushions and insulation stiffness, ballasting weights, horizontal, vertical, inclined pipes, combined buried and above ground (not buried) piping model, seismic wave propagation analysis, landslide, soil subsidence, seismic fault crossing, consider the natural arch of collapse for horizontal directional drilling method.

This soil model was developed at VNIIST Company (Moscow), and successfully used in 5 pipe stress analysis programs more than 35 years by lot of companies in Russia, Belarus, Ukraine, Kazakhstan, and some other countries.

Each soil support stiffness consist of vertical, horizontal and longitudinal nonlinear springs

- Horizontal spring consist of 3 springs K1, K2, K3.
- Vertical Spring consist of 2 (or 3) springs K1, K4 (and K2).
- Longitudinal spring K5.

PIPING AND EQUIPMEN

PASS/Start-Prof | New Features

Natural Arch of Collapse Phenomena

Lateral Bi-linear Soil Spring Properties

 R_s – Backfilling Soil maximum lateral force from database

Vertical Tri-linear Soil Spring Properties Pu Trilinear diagram is used for vertical springs Vertical downward soil stiffness is calculated using the equation $K_{d} = \frac{P_{d}}{\Delta_{d}} = \frac{0.144\tilde{E}_{2}}{(1 - v_{2}^{2})\sqrt{D_{c}}}$ $P_d = R_{s2}$ Δd Vertical upward soil stiffness is calculated using the equation Δu $K_{u} = \frac{P_{d}}{\Delta_{u}} = \frac{0.072E\eta_{v}}{(1-v^{2})\sqrt{D_{c}}} \left(1 - e^{\frac{-2Z}{D_{c}}}\right)$ $\eta_{v} = \begin{cases} 1 \ if \ Z_{w} \leq Z \\ 0.5(2 - Z_{w}/Z) \ if \ 0 < Z_{w} < Z \\ 0.5 \ if \ Z_{w} > Z \end{cases}$ $P_{d} = \overline{\gamma} D_{c} \left(Z - \frac{\pi}{8} D_{c} \right) + k \left(\overline{\gamma} Z^{2} \tan 0.7 \varphi + \frac{0.7 Z C}{\cos 0.7 \varphi} \right)$ Pd $\overline{\gamma}$ – Effective soil unit weight, considering the water liquefaction effect. For horizontal pipes it is calculated using the following method: • If the pipe is above the water level, then $\overline{\nu} = \gamma$ • If the pipe is below the water level, then $\overline{\gamma} = \gamma \frac{Z - \frac{\pi}{8}D_c - Z_w}{Z - \frac{\pi}{9}D_c} + \frac{\gamma_s - \gamma_w}{1 + e} \frac{Z_w}{Z - \frac{\pi}{9}D_c}$ • If the water level is within the pipe then $\overline{\gamma} = \gamma \frac{Z - Z_w - \frac{\pi}{4} D_c + V_w / D_c}{Z - \frac{\pi}{8} D_c} + \frac{\gamma_s - \gamma_w}{1 + e} \frac{Z_w + \frac{\pi}{8} D_c - V_w / D_c}{Z - \frac{\pi}{8} D_c}$ $V_w = \frac{D_c^2}{8} (\alpha - \sin \alpha)$ PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

You can define the depth from the surface at any node of the pipeline. Depth, water height and subsidence can change along the pipe length

For inclined and vertical pipes:

- The bilinear properties of each soil spring (stiffness, water buoyancy, spring displacement etc.) are calculated using individual depth of the specific spring
- Stiffness of the springs K3, K4 and K5 are also depend on the pipe angle to the horizontal plane (from 0 to 90 degrees). For vertical pipe elements the vertical stiffness K4 behavior becomes the same as behavior of horizontal spring K3

PASS/START-PROF can automatically calculate the mixed pipeline models with above ground pipes, horizontal pipes, inclined pipes, vertical pipes.

You don't need to do something manually. Just draw the pipeline "as is" and run

Modeling of Soil Subsidence, Frost Heaving, Landslide, Seismic Fault Crossing It is modeled as soil movements at the both ends of the each pipe at X, Y, Z directions

Landslide, Soil subsidence, frost heaving, Permanent ground deformation (seismic fault crossing) strain check is made according to ASCE 2001 (ALA) and GB 50470

To calculate the ring bending stresses the finite element model of pipe cross-section is used. The loads from the soil weight are calculated and applied for each point of pipe cross-section at whole perimeter.

Soil is modeled as discrete springs around pipe perimeter. The springs are switched off if tension is detected (usually at the top of the pipe). Flexible insulation also modeled if exist.

Internal pressure and product hydrostatic pressure is applied. The analysis consider geometric nonlinearity, the additional internal pressure stiffening effect is taken into account

Seismic wave propagation analysis for underground pipelines. START-PROF calculate stress and strain in buried pipeline caused by seismic wave propagation and check the stress and strain limits according to:

- ASCE 2001 Guidelines for the Design of Buried Steel Pipe (American Lifelines Alliance). Improved by START-PROF authors, added shear wave effect
- GB 50032 (China)
- GB 50470 (China)
- SNiP 2.05.06-85 (Russia)
- SP 36.13330.2012 (Russia)
- GOST R 55989-2014 (Russia)
- GOST R 55990-2014 (Russia)
- SP 284.1325800.2016 (Russia)

PIPING AND EOUIPME

• SP 33.13330.2012 (Russia)

🚰 Project Settings 1snip.ctp					×
General Additional Seismic Wir	nd, Snow, Ice	Other	Dynamic		
Analyze seismic acceleration code	User defined	Accelera	tion		•
Horizontal Acceleration (X)	1	G's			
Horizontal Acceleration (Y)	1	G's			
Vertical Acceleration (Z)	0.7	G's			
✓ Perform Buried Pipeline Seismic Wave P	ropagation Ana	lysis	_		
Buried Pipeline Seismic Analysis Code	ASCE 2001(A				
Characteristic Period of Ground Motion in pipe buried site	GB 50032 GB 50470	s	ec		
	OK	Cancel		Help	

Every pipe branch, turn or anchor cause great axial and bending stresses

Added strain check according to ASCE 2001 Guidelines for the Design of Buried Steel Pipe (American Lifelines Alliance), SNiP, SP, GOST, GB Codes

🖉 🖓 İnput 🔞 🖓 🔂 Str	ess 🖸										
Operating Mode				Show E	Equations	Stress F	Range from O	peration to	o Cold		
1.1 'Soil Seismic Wave Pro	paga 🝷					Add Axi	al Force and	Torsion St	tress ?		
Object	Start	Buried pipir	ng Seismic C	heck, (MPa)	Buried pip	oing Seismic	Check, (%)	Notes			
	node	SI	Allow	%	Σ	Allow	%				
Buried pipe	9	515.60	965.27	53.4	0.2009	0.2939	68.4				
	3	515.58	965.27	53.4	0.2009	0.2939	68.4				
Buried pipe	8	510.81	965.27	52.9	0.1985	E, 201051.12 MPa					
	9	515.60	965.27	53.4	0.2009	[ɛa]=0.75(0).5t/D-0.002	5+3000(P	D/(2Et)) ²), 0.002939		
Buried pipe	7	490.91	965.27	50.9	0.1884	[ɛa]%, 0.29	39				
	0	510.01	065.27	52.0	0 1005	0 2020	67.5				

Tension strain limit 5%

Compression strain limit

$$0.75 \left[0.50 \left(\frac{t}{D'} \right) - 0.0025 + 3000 \left(\frac{pD}{2Et} \right)^2 \right]$$

$$D' = \frac{D}{1 - \frac{3}{D}(D - D_{\min})}$$

🛛 🖓 Input 🐵 🔂 Stre	Linput 🛛 Stress 🕄																									
Operating Mode						\checkmark	Show	Equation	IS	Stress	Range fr	om Opera	tion to C	old	_											
Maximum	•	Add Axial Force and Torsion Stress ?																								
Object	Start End node	rt Hoop Primary Loads d Stress, (MPa) Stress in Hot State, (MPa) le					Primary&Secondary Loads Stress in Hot State, (MPa)			Expansion	n Stress Ran	ge, (MPa)) Buried piping Seismic Check, (MPa			 Buried piping Seismic Check, (%) 			Notes							
		Sh	F*E*Sy	%	Seq	F*Sy	%	SI	F*Sy	%	Seq	F*Sy	%	SI	F*Sy	%	Se	Sa	%	SI	Allow	%	Σ	Allow	%	
Buried pipe	9	85	173.75	48.9				24.62	180.99	13.6	154	217.18	70.9	69	217.18	31.8	93.61	217.18	43.1	515.60	965.27	53.4	0.2009	0.2939	68.4	
	3	85	173.75	48.9				24.62	180.99	13.6	154	217.18	70.9	69	217.18	31.8	93.61	217.18	43.1	515.58	965.27	53.4	0.2009	0.2939	68.4	
Buried pipe	8	85	173.75	48.9				24.69	180.99	13.6	153.55	217.18	70.7	68.55	217.18	31.6	93.23	217.18	42.9	510.81	965.27	52.9	0.1985	0.2939	67.5	
	9	85	173.75	48.9				24.62	180.99	13.6	154	217.18	70.9	69	217.18	31.8	93.61	217.18	43.1	515.60	965.27	53.4	0.2009	0.2939	68.4	
Buried pipe	7	85	173.75	48.9				24.98	180.99	13.8	151.70	217.18	69.9	66.70	217.18	30.7	91.60	217.18	42.2	490.91	965.27	50.9	0.1884	0.2939	64.1	
	8	85	173.75	48.9				24.69	180.99	13.6	153.55	217.18	70.7	68.55	217.18	31.6	93.23	217.18	42.9	510.81	965.27	52.9	0.1985	0.2939	67.5	
Long Radius Pipe Bend	2	85	173.75	48.9				35.27	180.99	19.5	204.13	217.18	94.0	119.13	217.18	54.9	84.97	217.18	39.1	732.51	965.27	75.9	0.1589	0.2939	54.1	
Buried pipe	2	85	173.75	48.9				30.03	180.99	16.6	169.99	217.18	78.3	84.99	217.18	39.1	84.91	217.18	39.1	568.23	965.27	58.9	0.1588	0.2939	54.0	
	7	85	173.75	48.9				24.98	180.99	13.8	151.70	217.18	69.9	66.70	217.18	30.7	91.60	217.18	42.2	/00.01	065.27	50.9	0 1884	0.2030	64.1	

The pipeline strain check is made according to ASCE 2001 (ALA) and GB 50470

(0) Operating	Mode	nanger sizir Z		ion state				1.00	1 00	cue interester interes	Juess Range D		Ac
(0) Operating (2) Landslide	iviode	~						1.00	1.00	ASCE 2001 (ALA)	✓ 1-1A	× ?	Dele
(1) Test										SUS		?	U
										осс			Do
								And the second second second second		Test			
										GB 50470	-		
LInput	8/3	Stress 🕻	3										
Operating Mod	de		Expans	ion Stress	Range			Show Equations	Stress Ran	a from Operation	to Cold		
2 'Landslide'	(2)		· ▼ 1"操作	E模式'(0)	(2-1A)		•			Force and Torgion	Strass ?]	
										oree and relation	00000		
Object	Start	Landslid	e strength	, (MPa)	Landslie	de str	rength (Te	ension Area), (%)	Landslide stre	ength (Compress	Notes		
	node	SI	Allow	%	٤		Allow	/ %	٤	Allow	%		
		48.20	1930.53	2.5	0.023	87	2	1.2	-0.02386	2	1.2		
Buried pipe	1	40.20					2	4.6	-0.02027	2	10		
Buried pipe	1 2	186.69	1930.53	9.7	0.0924	47				_	1.0		
Buried pipe Buried pipe	1 2 2	186.69 77.07	1930.53 1930.53	9.7 4.0	0.0924	47 17	2	1.9	0.03403	0.7304	4.7		
Buried pipe Buried pipe	1 2 2 3	186.69 77.07 45.84	1930.53 1930.53 1930.53	9.7 4.0 2.4	0.0924	47 17 27	2 0.7304	1.9 4 3.1	0.03403	0.7304 E, 201906.18 M	4.7 Pa		_
Buried pipe Buried pipe	1 2 2 3	186.69 77.07 45.84	1930.53 1930.53 1930.53	9.7 4.0 2.4	0.0924	47 17 27	2 0.7304	1.9 4 3.1	0.03403	0.7304 E, 201906.18 M [ɛa]=0.5t/D-0.0	4.7 IPa 0025+3000(PD/	((2Et)) ² , 0.007	304
Buried pipe Buried pipe	1 2 2 3	186.69 77.07 45.84	1930.53 1930.53 1930.53	9.7 4.0 2.4	0.0924	47 17 27	2 0.7304	1.9 4 3.1	0.03403	0.7304 E, 201906.18 M [ɛa]=0.5t/D-0.0 [ɛa]% 0.7304	4.7 Pa 0025+3000(PD/	(2Et)) ² , 0.007	304

PASS/Start-Prof | Features

Automatic local pipe wall buckling check per

- ASME B31.8-2018
- EN 13941-2019 7.2.4.2
- GOST 32388

• For $(D_o - t_n)/(2t_n) \le 28.7$ $S_{st} = 0.0016E$ • For $(D_o - t_n)/(2t_n) > 28.7$ $S_{st} = (0.0458 \cdot 2t_n/(D_o - t_n) + 0.00003)E$

▲ Input ③ Stress ③ Stability ③ Operating Mode 1 操作模式'(0)														
Start End	C1 Local B Hot Condit	Buckling in tion, (MPa)	C1 Local E Cold Condi	luckling in tion, (MPa)	C1 Local E Test Condit	Notes								
node	calcu- lated	allow- able	calcu- lated	allow- able	calcu- lated	allow- able								
1	36.09	33.88	38.39	33.88	0.01	33.88	1,2							
2	12.95	33.88	34.84	33.88	0	33.88	2							
2														
2	21.44	33.88	34.63	33.88	0	33.88	2							
3	35.93	33.88	38.89	33.88	0.01	33.88	1,2							
	Start End node 1 2 2 2 3	State State State C1 Local E Hot Condition Calculated 1 36.09 2 12.95 2 21.44 3 35.93	Stability Stability Image: Stability Image: Stability Image: Stability Image: Stability Image: Stability Image: Stability Statility Image: Stability Image: Statility Image: Stability Image: Statility Image: Statility Image: Statil	Stability Stability Start ? Start C1 Local Buckling in Hot Condition, (MPa) C1 Local Buckling in Cold Condition, (MPa) calcu- lated allow- able calcu- lated 1 36.09 33.88 38.39 2 12.95 33.88 34.84 2 2 21.44 33.88 34.63 3 35.93 33.88 38.89	Stability Stability <thstability< th=""> Stability <th< td=""><td>Stability Stability Image: Stability Image: Stability Statility Image: Stability Image: Statility Image: Stability Image: Statility Image: Stability Image: Statility Image: Stability Image: Statility Image: Statility Image: Statility Image: Statility Image: Statility Image: Statility Image: Statility Image: Statil</td><td>Stability Stability <t< td=""></t<></td></th<></thstability<>	Stability Stability Image: Stability Image: Stability Statility Image: Stability Image: Statility Image: Stability Image: Statility Image: Stability Image: Statility Image: Stability Image: Statility Image: Statility Image: Statility Image: Statility Image: Statility Image: Statility Image: Statility Image: Statil	Stability Stability <t< td=""></t<>							

 $\left(0.4\frac{t}{D} - 0.002 + 2400\left(\frac{P \cdot D}{2t \cdot E}\right)^2\right) E$ at $\frac{PD}{2tS} < 0.4$ $\left(0.4\frac{t}{D} - 0.002 + 2400\left(\frac{0.4S}{E}\right)^2\right)E$ at $\frac{PD}{2tS} \ge 0.4$

📕 Input 💿 🔂 Stability 🔯								
Operating Mode								
1 'CTAPT1' (0) • ?								
Object	Start End node	Axial Str All Lo Hot conditior	ess From ads in n, (kgf/sq.cm)	Axial Stro all Ioa Cold conditio	ess From ads in n, (kgf/sq.cm)	Axial Str All Lo Test Mode,	Notes	
		calcu- lated	allow- able	calcu- lated	allow- able	calcu- lated	allow- able	
Above ground pipe	7,Bend			492.22	18345.53	588.61	18322.60	
Above ground pipe	33	2963.95	17774.76	2963.95	18345.53	1771.67	18322.60	
	32, Offshore	219.58	17774.76	219.59	18345.53	219.47	18322.60	
Above ground pipe	35	4055.33	17774.76	4055.34	18345.53	2412.27	18322.60	
	34, Offshore Raiser	273.36	17774.76	273.37	18345.53	273.20	18322.60	

PASS/Start-Prof | Features

Upheaval buckling analysis in START-Elements

Trubodetal1 🚨											
tbee	Outside Diameter, D	0	mei.		Pipe		Rid		Insulate	n 🗐	
15-06-2020	Pipeline Category	8		•	0	kgt/m	0	kg/m	0	kgt/m	
tNumber					Depth t	o Pipe Ce	riter, Z			m .	
	Pressure safety factor	1.1			Curve #	saous			0.	m .	
.05.05-85 Gas & sil transmission piping i	* Pina Wall Thickness	0	-		Incline	Angle to H	fortzon		0		
Day the same	External Casing Dameter	5	100	111	Runbe	nd angle		α	0		
Wall thickness analysis.: 0	(0 # absent), Oc	-	-	-							
	Anders renpetative	0	31		112	-				2	
Span length analysis.: 0	Openang temperature		16					_	1		
Wall thickness analysis.: 0	Backfill Soll Code	Founde	tion Sol Cod	e :		20	. 1	<u>ر</u>	l'		
- Stability analysis.: 0	04		(h)			1		1	- 1		ABATT
Pipe elongation: 0	Insulation Type	Other		*		3	1		SF		< 1 X
Ppe strength against surface load	0 Operating Pressure	0.0	kg/ha.c	211		<u>्रे</u> ‡	1-		- 1	19	ra
Pipe. Bried pipe in embenionent	Material			•		1			14	T	-
Bend						1			10	11	THE PARTY OF
Reducer						3			1	1/2	
Cap							L	\sim		• /	
 I, Z, U-shaped pipe loops. Above-g I, Z, U-shaped pipe loops. Above-g 	DUF DUF						1		1		
L. Z. U shaped gipe loops. Buried							8		1		Solar Solar

PASS/Start-Prof | Features

Lateral buckling analysis of above ground pipeline in START-Elements

PASS/Start-Prof | Piping Model Creation

In PASS/START-PROF the piping model creation is simple and straightforward. Even a beginner will understand what to do. Create the Piping and Equipment Model by Combining the Objects Like LEGO

- Fast Model Creation
- Fast and Easy Existing Model Modification
- You can Add, Delete, Modify, Copy, Rotate, Mirror, Split Objects
- Work With Object Groups

PASS/Start-Prof | Piping Model Creation

PASS/Start-Prof | Piping Model Creation

ANALYSIS & SIZING SUITE

Image: Constraint of the second sec	Wandacturing Technology	Sandard	Material	Six	Darreber max.,	Durneter min, rem	Hormal Dameter max, test	Nicercal Diemetrs min. Teat	SIPS man. H	NRS edu, W	Schedule	Thiskness at Dress. Met	Thickness at Dires, even	todesaver stDress.	Tallerance at Denin, reax	fullength.	Conclength,	â	
Adde (56)-2017 cent units 25/16 25/7 17.5 25 01 3.44 3.76 0.76 0 0 0 0 0 0 0.7 25.7 cent unit Adde (56)-2017 cent unit 20-10 3.7 17.5 2.6 0 5.6 0 0 0 0 0 0 0 0 0.7 0.7 2.6 cont unit Adde (56)-2017 cent unit 0.7 17.3 2.0 0 3.4 1.8 2.0 0 <th></th> <th>Common and</th> <th></th> <th>5</th> <th>in the second</th> <th>Column 1</th> <th>51 i P</th> <th></th> <th></th> <th></th>		Common and											5	in the second	Column 1	51 i P			
Added B162-2017 rest auto 20-10 26.7 17.3 28 90 34 38 55 0	+ mat set i	ASAR: B16.9-2012	-retaints-	25.10	28.7	17,5	12	20	24	378	30	ġ.	B	Ø. 2	4	11	17.8	-0	
Constraint Addle (ESA-2012) rest sets 2010 25.7 17.8 29 0 3.4 18 20 0	engt safe	Addet 816.9-2012	+ nod sate	20-10	28.7	17.3	29	10	34	1/8	95	0	p.	Ð.	0	11	22.8		
Head (add) State (bitis) 2012 Head (add) 2010 21.7 7.2 20 0 344 10 0 0 0 0 36 22.8 Head (add) State (bitis) 2012	(datad)	ASA/E B18/P-2012	+ met set>	20-10	26.7	17.1	29	10	34	14	20	0	0	0	0. S	88	12.8		
Hold E16+301 Hold E304 2010 25.7 17.2 20 00 54 18 00 0 0 0 22.8 Hold E16+3013 Hold E304 20.0 25.7 17.2 20 00 34 18 00 0 0 0 20 22.8 Hold E304 Hold E304 Hold E304 Hold E304 Hold E304 0 0 0 0 18 22.8	net sets	45ME 816.9-2012	+ net set+	20-10	26.7	17.8	29	90	3/4	3/8	10	0	0	0	0	38	22.8		
Septembre 46546 (2112-301) - rest are: 20-10 26.7 17.5 28 10 3/4 1/8 4/5 0 0 0 0 0 8 18 23.8	real sets	ASME 816.9-2012	singlights	20-10	26.7	17.3	30	40	3/4	3/8	105	Ó	0	0	0	39	22.8		
10120-0012-0010	Heat patch	45546-818,9-3013	(solution)	20-10	36.7	17,5	20	30	34	3/8	405	0.	0	0	0	11	52.8		
CONTRECT ADDREETED-2012 CONTRECT	Rait sats	ASME 016.9-2012	+ not salt>	20-10	36.7	17.9	20	30	3/4	1/8	120	٥	D	0	0	10	22.8		
variante ASAKEDIN-2012 (variante 20-10 20.7 17.2 22 10 34 34 34 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	entrate C	ASME 010.9-2012	-net alo	20-10	26.7	17.5	12	10	34	14	10	0	0	6	a :	11	22.8	*	

Valve Object

Automatic Flange Leakage Check

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Insulation Joint (Electrical Insulation Kit) Object. The axial stress and stress from torsion moment is checked automatically

PIPING AND EQUIPMENT

Object "Tank Nozzle API 650", allows to automatically model the storage tank nozzles. Automatically model flexibilities using API 650, thermal movements of the nozzle, movements and rotation due to tank bulging effect using API 650, tank settlement, automatically checks allowable loads using API 650 and STO-SA 03-002-2009

	1650					
Name	e					
Material	of Tank			20		٠
Manufac	turing Techno	logy		Searriess		•
Тепрета	ture of Tank		L	40	T.	
Renove	Restraints for	Hanger Selec	stion			
Vertical	62	• (E) X (C)	18.8	77 D.8	DK EY	
Radius o	f Tank, R			40	m	
Length fr	om Bottom to	Nozde Asis, I	Q.	0.63	10	
Nall This	okness of Tan	k,t		34	mn	
Outer Di	emeter of Noz	de 2a		610	inn	
Reinforce	enert			On Shell		
Filing He	H.H		L	5	m	
Density of	Product, G			1000	kg/m3	E.
Settleme	nt of Tank, e		TL.	200	mn	
Nozzle	Resbilly		Ale	wable Load	te .	
By API	650		By A	4P1 650		•
Lred (0.3042880744	B.mm.W				
Lor i	Ċ.	nm/ti				
Llong (0	ner/tf				
Rrad (0	rad./tf m				
Rer I	0.00039594	rad./tf-m				
		Sec.				

- Object "Pump API 610/ISO 13709", allows to automatically model the pumps, consider thermal movements of the nozzles, checks allowable loads using API 610 and ISO 13709
- Object "Pump ISO 9905", "Pump ISO 5199"
- etc.

)		Properties	🚰 Node Object Pr
		13709	Pump API 610/150
L L			Nane
2	20		Material of Pump
c	L 50	πp	Temperature of Pum
1		vable Multiplier	Manufacturer Allowa
2		ing Factor	Table Nozzie Loade
	x		Schaft Ave
742 .		anate from Node	Pump Center Coordin
DZ.		DY	DX
0 mm	1915	2500	0 em
	ction	for Hanger Seles	Remove Restraints for
		•	Don't Remove
			Suction Node
	Set Lands	• • 🗆	742 * Side
			Decharge Node
	Set Loads		715 + Side
			Halle
el Heb	Can	OK	

a) The individual component forces and moments acting on each pump nozzle flange shall not exceed the minge specified in Table 5 (74) by a factor of more than 2.

b) The resultant applied force (P_{BRA}, P_{BRA}) and the resultant applied moment (M_{BRA}, M_{BRA}) acting on each pump-nozzle fange shall satisfy the appropriate interaction equations as given in Equations (F.1) and (F.2).

1	$F_{\text{HEA}}[1.5 \times F_{\text{RST}4}]] + [M_{\text{RST}4}[1.5 \times M_{\text{RST}4}]] < 2$	#3
- p	$F_{RDM}(1.5 \times F_{RDT4}) = (M_{RDM}(1.5 \times M_{RDT4}) < 2$	(F.2

c) The applied component forces and moments acting on each pump nozzle flange shall be translated to the centre of the pump. The magnitude of the resultant applied force, P_{RCA}, the resultant applied moment shall be limited by Equations (F.3) to (F.5). (The sign convention shown in Figures 21 through 25 and the applied moment and a fland be used be used in evaluating these equations.)

$F_{\rm REA} < 1.5(F_{\rm RET4} + F_{\rm RET4})$	F-3)
$\lambda\delta_{\rm FC/R} < 2.0 (M_{\rm VBT4} + \lambda\delta_{\rm VDT4})$	(F A)
Macon < 1.5(Masta + Masta)	(F.5.)
where	
$F_{\mathrm{HCA}} = [(F_{\mathrm{HCA}})^2 + (F_{\mathrm{HCA}})^2 + (F_{\mathrm{2CA}})^2]^{(2)}$	
where	
$F_{\rm XDA} = F_{\rm XDA} + F_{\rm XDA}$	where
$F_{\rm VDA}=F_{\rm VDA}+F_{\rm VDA}$	$M_{\rm NGA} = M_{\rm NGA} + M_{\rm NGA} - (\langle F_{\rm NGA} \rangle (z \bar{z}) + \langle F_{\rm NGA} \rangle (z \bar{z}) - (F_{\rm ZGA}) \langle z \bar{z} \rangle - \langle F_{\rm ZGA} \rangle (z \bar{z}) - (F_{\rm ZGA}) \langle z \bar{z} \rangle - \langle F_{\rm ZGA} \rangle (z \bar{z}) - \langle F_{\rm $
$F_{\rm 2DA}=F_{\rm 2DA}+F_{\rm 2DA}$	$M_{\rm VCA} = M_{\rm VIA} + M_{\rm VDA} + ([P_{\rm XDA})(z5) + (P_{\rm XDA})(z2) - (P_{\rm 2DA})(z5) - (P_{\rm 2DA})(z3) + (P_{\rm 2DA$
$M_{\rm HCA} \simeq 1(M_{\rm HCA})^2 + (M_{\rm HCA})^2 + (M_{\rm HCA})^2 J^{0.6}$	$M_{222A} = M_{225A} + M_{225A} - (G_{KDA}(xS) + (F_{KDA})(xD) - (F_{VDA}(xS) - (F_{VDA})(xD))(xD))(xD)$

Operating Mode 1 'main mode' (0)	 Op 	d Case Haling W+P+T	÷				Show 1	Equations	7	1			
Object	Start End node	Туре	DN, mm	Frad, N	Feir, N	Flong N	FR, N	Mrad, N-m	Mcir, N-m	Mlong, N-m	MR, N-m	Sum	Notes
Pump API 610/15O 13709	Node (1)	Suction, Side	200	-7333	5887	-29592	31050	-2626.53	18306.88	4598.20	19057,39	2.64	÷.,
				9780	6220	7560	6920	3520	5100	7060	4710		
	Node (3)	Discharge, Side	200	1440505	-173	0	1440505	0.		28.89	28.89	09.35	1
				9780	6220	7560	6920	3520	5160	7060	4710		
		Summary Loads		1433173	5714	-29592	1433490	-2626.53	33102.90	7057,21	34078.35		10
		1					20760	[My_sum]=i	MradT1] +	[MredT2])=2*	(1760+1760	0=7040	Ner

Added new object Untied Expansion Joint and database of Untied Expansion Joints, allows to specify the axial, rotational, shear and torsion flexibility and automatically checks the individual and combined allowable deformations. No need to manually model it using nonstandard expansion joint any more

Ctrl+H

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Operating Mode		Load Case	e			Axis							
1 '操作模式' (0)	•	Operating	y W+P+T •			Local axis (De	esign/Allowable) 🔻	?					
Node Number	Туре		Local axis	Axial, (mm)	Allowable, (mm)	Shear, (mm)	Allowable, (mm)	Angular, (°)	Allowable, (°)	Torsion, (°)	Allowable, (°)	Summary	Notes
12	Untied Expans	ion Joint	Pipe 3 - 12	2.41	50	1.22	15	9.59131	10	-2.05119	No	1.09	1
13	Torsion Expans	ion Joint	Pipe 5 - 13	0	No	0	No	0	No	13.9229	51.5662	0.27	
15	Torsion Expans	ion Joint	Pipe 7 - 15	0	No	0	No	0	No	10.1299	51.5662	0.20	
21	Torsion Expans	ion Joint	Pipe 19 - 21	0	No	0	No	0	No	-4.36021	51.5662	0.08	
	· - · -			-	i	-	••	1.21		10 TEX	1.1 //	0.77	1.

Added new object Torsion Expansion Joint and database of torsion expansion joints, automatically model torsion friction (friction moment) and checks allowable rotation angle

I Node Object Properties		
Flange Pair		
Length Weight	8.51 in 1131.22 ^{Ibf}	
Flange Leakage Check Ye	es 🔹	
Leakage Check Method	PVP / Code case 2: •	
Flange Code	ASME -	
Gasket Effective Diameter, G	25.875 in	
Nominal Pressure PN / Class	300 👻	
Material Group	1.1 •	
Factor, Fm	0.5	
	Flange Pair Name Length Weight Range Leakage Check Y Leakage Check Method Flange Code Gasket Effective Diameter, G Nominal Pressure PN / Class Material Group Factor, Fm	Range Pair Name Length 8.51 Weight 1131.22 Bange Leakage Check Yes Leakage Check Method PVP / Code case 2! Plange Code ASME Gasket Effective Diameter, G 25.875 Nominal Pressure PN / Class 300 Material Group 1.1 Factor, Fm 0.5

Flange Object

Automatic Flange Leakage Check:

- Equivalent pressure / Kellogg Method
- Code Case 2901 / PVP2013-97814 Method
- DNV Method
- NC 3658.3 Method

📕 Input 🐵	🐻 Flange le	eakage 🔯									
perating Mode		Submode									
1 'Operation mode	e' (0)	 Operation (all loads) 	÷ ?								
Node Number	Object	Flange on the side of node	Pipe outside diameter, (mm)	Temperature, (°C)	Axial Force, (kgf)	Bending Moment, (kgf·m)	Parameters	Con	dition, (MPa))	Notes
								calcu- lated	allow- able	%	
3	Flange Pair	-	219.08	400	-1000	1499.98	1.60 MPa	4.29 MPa	17.36 MPa	24.70	

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Added ability to specify insulation, cladding, and liner layers density and thickness in pipe properties. The ability to choose an insulation weight from the database still exist

Test Pressure		0	MPa						
Uniform Weight									
Calculate Pipe Weight	Automa	tically							
Pipe		179.98	kgf/m						
Insulation	L	49.31	kgf/m	>					ti, ltc
Fluid	L	14.74	kgf/m			Insulation Thickness	50	mm	1 2
Fluid Density	L	1000	kg/m3						
						Insulation Density	800	kg/m3	4
					L	Cladding Thickness	10	mm	
ОК		Cancel	He	lp		Cladding Density	1500	kg/m3	U II
					L	Lining Thickness	0	mm	
					1	Lining Density	이	kg/m3	
								-	

Guide (Single-Direction) Guide (Double-Direction)	Node Object Properties Andror fixed Name Demoil Name Demo	Spring Hanger	Indu Dipart Properties X Sping Hanger X Namies rock 1 Lood Range 25 Woodbit Load Safety Fature 1 1 Hanger Operation Load 0 Bit Hanger Operation Load 0 Safety of one sping 0 Bit Hanger Operation Load 0 Test State 1 Test State 1 CK Description
 Automatic Variable Spring Selection Automatic Constant Spring Selection 	Node Object Properties Hinged Anchor Check Allowable Loads Allowable Loads Loads in Local Coordinates FX 0 bf FY 0 bf FZ 0 bf V 0 bf FZ 0 bf	Spring Support	Nacde Object Properties X Serry Sepon Turober of supports Turober of supports Turober of supports Turober of supports Turober of support Suffers Suffers Suffers Suffers Suffers Suffers Turoball Suffers Suffers Turoball Suffers Su
Guide Support	Double-director Carde Help Name Histor Factor Histor Factor 03 Use Gase users Gape Use Gase users Gape Use Gase mm Direck Also de Loads Movade Loads Allowade Loads Ed SX Ed SX Ed SZ Ed	Constant Hanger	Node: Object Properties Constant Hanger Name Name

Custom Non-Standard Restraint Object

To specify support movement, just add displacement object to the support object

To specify the cold spring (cold pull, pre-stretch), just add the cold spring object in the node

х

 \times

Pipe wall thickness calculator and bend wall thickness calculator for all codes.

> PIPING AND EQU ANALYSIS & SIZIN

Project tree	P × Outer Dispeter D	0		
	Outer Diameter, D	o mm		D
Data 15-06-2020	Operating Temperature	0 °C		
Object Number	Mill Tolerance	0 %		i s
Code	Corrosion Allowance	0 mm		
ASME B31.8-2018 Gas Transmission (US) -			
Input 🖉 🐏 Irubodetal1 🕃	Eactor 'E'	1		
oject tree		0		
ata 15-06-2020	O Factor F	U C		
biost Number	N			
voject Number				
ode	Use alternative formu	la 841.1.1 (b)	J	
SME B31, 12PL Hydrogen Pipelines (USA)	Pipeline	Onshore Pipeline	•	
SME B31.3-2018 Process Piping (USA)				
SME B31.5-2016 Refrigeration piping and hea	Fi Material	•		
SME B31.8-2018 Gas Transmission (USA) SME B31.9-2014 Building Services Piping (USA	E			
S PD 8010-1,2:2015 Steel pipelines on Land& 3J/T 81-2013 Heating network (China)				
SA Z662-19 Oil and gas pipeline systems (Car	Operating Pressure	0 kgf/sq.cm		
N 13480-2017 Metallic Industrial Piping (Europ	Wall Thickness, S	0 mm		
N 13941-2019 District heating piping systems B 50251-2015 Gas Pipelines (China)				
B 50253-2014 Oil Pipelines (China) B 50316-2008 Metallic Industrial Piping (China	P			
B/T 20801-2006 Process Piping (China)				
OST 32388-2013 Process piping (Russia) OST 32388-2013 Sorting out thicknesses (Ru	M			
OST 55596-2013 District heating piping syste OST R 55989-2014 Gas & oil transmission pipi				
OST R 55990-2014 Oilfield piping system (Rus				
60 14692-3:2002/Col 1:2003 GRF piping systems (Intern	C			
D 10-249-98 5.1 Power piping. Barrels, manif D 10-249-98 5.2 Power piping. Steam and ho	6			
D 10-400-01 District heating piping systems (
VIP 2.05.06-85 Gas & oil transmission piping s				
P 284.13258000.2016 Oilfield piping system (

Pipe wall thickness calculator and bend wall thickness calculator for all piping codes.

All pipe and fitting wall thicknesses are automatically checked before every run of the pipe stress analysis according to the selected code.

Pipe Span Length Analysis

Longitudinal Stability Analysis

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

(PASS

Calculate Wall Thickness Under Vacuum and External Loading

> PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Simple Expansion Loop Analysis

Project tree 4	Outside Diameter, D	0	mm		_	
Data 09-06-2020	Operating Temperature	0	°C	-	D	
Object Number	Pipe	Elec	tric-welded 🔹		: .c	
Code	Weld Quality Factor for Pressure	1				
GOST 32388-2013 Process piping (Russia)		I				
Pipe. Above ground	Mill Tolerance	0	mm			
Strength analysis of vacuum elem	ent Corrosion Allowance	0	mm	│—		
Analysis of allowable load capacity Stability analysis.: 0 Span length analysis.: 0 Pine. Buried	fo Availability of stiffening ribs					
🕀 🖉 Bend						
🗄 📥 Tee	minubodetali 😜					
Reducer	Project trees	Poe Dianeter, D	0 mm	Stretch factor (without	0	
🕀 🛄 Flange	Data 09-06-2020	Pipe Wall Thickness, S	0 mm	stretch (0)		
		Mil Tolerance	0	Operating Pressure	0 kgf/eq.on	
Expansion joint	Object Number	Corrosion Allowance	0	Material		
🗄 📉 L-, 2-, U-snaped pipe loops. Above-gr	Code	Operating Temperature	0 10	Expansion joint back, B	0 m	
E-, 2-, U-snaped pipe loops. Above-gr	GOST 32388-2013 Process piping (Russia) *	Ambient Temperature	0 10	Expansion joint leg. H	0 m	
	T Poe. Above ground	Proc. Different	E herieter			
	🗄 😅 Pipe, Buried	C Inter D	Later D Later			
	8- P bend	Firting Factor in Besting	Ngrie v Ngrim	Allowable load on end		
	E de Tee	Supports	0.3	support	0 Augr	
	E Hange	Ppe	Electric-welded			
	🗄 🖾 Cap	Weld Guality Factor for:			P	0
	8-D-Expansion joint	pressure 1	bending 0.9		+ D	+ +
	E Z-, U-shaped pipe loops. Above-grour	Flexibility of bends	inner 10			
	Z-shaped: 0		grore			
	Z-shaped nonparallel: 0	Bend curve radius	0 mm		R –	
	JR. U-shapedi 0		1.0		8 0	$\mathbf{\gamma}$
	- , U-shaped external: 0	Compensated .	2.0 -		I	
	E-1 L-, Z-, U-shaped pipe loops, Above-orour		1 P	1	0	Louis
	L-shaped: 0			A Lauid		B
	- J Z-shapedi 0			No		_ <u>_</u>
	- JL U-shaped: 0					
	E _ L-, Z-, U-shaped pipe loops, Busied			- 1		1.
				L1		L2
	Z-shaped parallel: 0					
	Z-shaped nonparallel: 0					
	- Stabed regular: 0					
	PLAN WARKEN AND THE TOP TO					

C/PASS

PASS/Start-Prof | Features

- No need to create the load cases manually
- Save a lot of time and protect from mistakes
- Operation Mode Editor will do this job for you
- Easy to understand and change
- No limit on pressure, temperature number

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE 67 complex load cases are automatically generated based on simple five START-PROF operating modes

+	Name	High temperature	Cold State	Seismic	Wind	Snow/Ice	Use Load Factors	Friction Multiplier	Weight Multiplier Mod	e Type 5	tress Range Betw	Smolfed Load Case Ter	mplates, Real load case templates	olease one in
1	Operating		2	2	2	2	2	1.00	1.00 SUS	- 1	-14, 1-2, 1-3, 1-4	OperNtion Mode #1: On	wrating	personal persons
1,1	Safety Valve Thrust 1	(+ .)	4	+		-	4		- OCC	4		L1: W1+P1 SUS Stress.	Disp. Force, etc.	
2	Operating 2						2	1,00	1,00 SUS	~ Z	-1, 2-1A, 2-3, 2-4	1.2: W1+P1+T1 OPE De	p. Force, etc.	
2.1	Safety Valve Thrust 2	÷./			+	T	•		- occ	~		13:124.1(#1)EXP(1-1A) Stress	
3	Filling						2	1.00	1.00 SUS	~ 3	-1A	14: L2-L2(#2) EXP(1-2)	Stress	
4	Emergency						R	1.00) 1.00 SUS	~ 4	+1A	15:12-12(#3) EXP(1-3)	Stress	
5	Test								Test	0		16:1212(#4) EXP(1-4)	Stress	
												17: W1+P1+T1+S Dep.	Force, etc. (S - Snow)	
												18:1742 Algebraic	a set on the second	
												19: L14L8 Scalar SUS St	triegs	
												1 10-101-001-01-01-01-01-01-01-01-01-01-01	Form air (I - Ica)	
											OK	CITELE 104 7 Montrain	A convertience for seen	
_		1.404 1		E PAT				1	CONTRACTOR -			LITTE LANCE MILED OF	Man-ii	
	1 0 #	South			10	And and a state of the	And Personal Property lies			and the second	and IT	L12: L1+L11 Sceler SUS	- 5-9 ess	
	\$ \$ * e		40		~	T		10		-	-tem	113: W1+P1+T1 +Sest	nic(+X) Disp, Force, etc.	
			4			T		-	411		Cita	L12: L1+L11 Scalar Scs L13: W1+P1+T1 +Sesn L14: L13-L2 Algebraic	no(+X) Disp, Porce, etc.	
		L	1			T			Y		T	L12: L14:L11 Scalar SUS L13: W1+P1+T1 +Sesr L14: L13-L2 Algebraic L15: L1+L14 Scalar OCC	obress nic(+X) Disp, Morce, etc. 2 Stress	
		1				T		-	y i		-	L12:L1+L11 Sciler Science Sci L13:W1+P1+T1 +Steam L14:L13-L2 Algebraic L15:L1+L14 Scalar OCC L16:W1+P1+T1 +Steam	soress nic(+X) Disp, Force, etc. C Stress nic(-X) Disp, Force, etc.	
		1			A N	J						13: W1+P1+T1 +Steam 13: W1+P1+T1 +Steam 14: 13: 13: 14: 2 Algebraic 15: 11+14: 5 calar OCC 16: W1+P1+T1 +Steam 17: 155-12 Algebraic	Stress nc(+X) Disp, Force, etc. 2 Stress nc(-X) Disp, Force, etc.	
		R		NIN IN	P P	T						L12: L1+L1 Score SUS L13: W1+P1+T1 +Siesn L14: L13-L2 Algebraic L15: L1+L14 Scaler OCC L16: W1+P1+T1 +Siesn L17: L15-L2 Algebraic L18: L1+L12 Scaler OCC	Stress nc(+X) Disp, Force, etc. C Stress nc(-X) Disp, Force, etc.	
1				NIN IN	PI Not	D D D D D D D D D D D D D D D D D D D						122:114:11 Scaler SUS 123: W1+P1+T1 +Slear 14: 1134:2 Agebrai: 15: 114: 1134:2 Agebrai: 15: 114: 114 Scaler OCC 136: W1+P1+T1 +Slear 137: 1154:2 Agebrai: 138: 114: 17 Scaler OCC 138: V1+V1 Scaler OCC	Stress nc(+X) Disp, Force, etc. C Stress nc(-X) Disp, Force, etc. C Stress c(-X) Disp. Force, etc.	
		R		NUNK!	- AIN	JA						12:114L11 Scaler SUS 13:114L134.2 Agebraic 14:1134.2 Agebraic 15:114L14Scaler OCC 16:W1+P1+T1 +Scaler OCC 16:W1+P1+T1 +Scaler OCC 18:114L17 Scaler OCC 19:114L17 Scaler OCC 19:114L17 Scaler OCC	Stress nc(+X) Disp, Force, etc. C Stress nc(-X) Disp, Force, etc. C Stress nc(+Y) Disp, Force, etc.	
				NINKIK	The second	DUR.			洲	THE P		137: 114:11 Scalar Su5 137: W1+P1+T1 +Sear 134: 134:2 Algebraic 135: 114: 14 Scalar OCC 136: W1+P1+T1 +Sear 137: 136-12 Algebraic 138: L1+L17 Scalar OCC 139: W1+P1+T1 +Sear (20: 134:2 Algebraic	Stress nc(+X) Disp, Porce, etc. Stress nc(-X) Disp, Force, etc. C Stress nc(+Y) Disp, Force, etc.	
				AN NIXIE	- PIA ANA	DUP T	THE					13: W1+P1+T1 +Steam Xr5 13: W1+P1+T1 +Steam 14: 134.2 Algebraic 15: 11+1.14 Scalar OCC 16: W1+P1+T1 +Steam 17: 156-12 Algebraic 18: L1+L17 Scalar OCC 19: W1+P1+T1 +Steam 12: L1+L20 Scalar OCC 12: L1+L20 Scalar OCC	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress	
				MININE STATE	PI North	DATE NO						13: U14:11 Scalar Su5 13: U14:14 Scalar OCC 13: U14:14 Scalar OCC 13: U14:14 Scalar OCC 13: U14:14 Scalar OCC 13: U14:17 Scalar OCC 13: U14:17 Scalar OCC 13: U14:17 Scalar OCC 13: U14:12 Scalar OCC 12: U14:12 Scalar OCC 13: U14:12 Scalar OCC 14: U14:12 Scalar OCC	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc.	
				MINIS/K		TYPE T						12:114.11 Scalar Su5 13:1134.134.2 Agebraic 14:1134.2 Agebraic 15:114.14 Scalar OCO 15:114.14 Scalar OCO 15:114.14 Scalar OCO 15:114.17 Scalar OCO	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc.	
				MINIS IN MINIS		TANK I		A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO				12:114.11 Scalar Su5 13:114.1134.2 Agebraic 14:1134.2 Agebraic 15:114.14 Scalar OCO 15:114.14 Scalar OCO 15:154.2 Agebraic 13:1554.2 Agebraic 13:114.17 Scalar OCO 14:19:W1+P1+T1 4Siasa 120:1194.2 Agebraic 121:114.20 Scalar OCO 122:W1+P1+T1 4Siasa 123:1224.2 Agebraic 124:114.23 Scalar OCO	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc. 2 Stress	
				WINNIE CO						THE STATE		1221114113CAMP 303 1131 W1+P1+T1 45est 11411342 Agebraic 11511141145caler OCC 1151W1+P1+T1 45est 11711542 Agebraic 11711542 Agebraic 1191W1+P1+T1 45est 12011342 Agebraic 121114120 Scaler OCC 1221W1+P1+T1 45est 123112242 Algebraic 124114423 Scaler OCC 1251W1+P1+T1 45est	Stress mc(+X) Disp, Porce, etc. C Stress mc(-X) Disp, Force, etc. C Stress mc(+Y) Disp, Force, etc. C Stress mc(-Y) Disp, Force, etc. C Stress mc(+Z) Disp, Force, etc.	
			+	WINKING TH	PI AGUN AND					THIS IS		13: W1+P1+T1 +Stear 505 13: W1+P1+T1 +Stear 14: 134.2 Agebraic 15: 114.14 Scalar OCC 16: W1+P1+T1 +Stear 17: 16-12 Agebraic 18: 11+1.17 Scalar OCC 19: W1+P1+T1 +Stear (20: 134.2 Agebraic 12: W1+P1+T1 +Stear 12: 11+L20 Scalar OCC 12: W1+P1+T1 +Stear 12: 12: 22: 2 Agebraic 12: W1+P1+T1 +Stear 12: 11+12: 3 Scalar OCC 12: W1+P1+T1 +Stear 12: 11+P1+T1 +Stear 13: 12: 12: 12: 12: 12: 12: 12: 12: 12: 12	Stress mc(+X) Disp, Porce, etc. C Stress mc(+X) Disp, Force, etc. C Stress mc(+Y) Disp, Force, etc. C Stress mc(-Y) Disp, Force, etc. C Stress mc(+Z) Disp, Force, etc.	
					The second second					THIS S		13: U1+L11 Scaler SUS L13: W1+P1+T1 +Stear L14: L134.2 Algebraic L15: L1+L14 Scaler OCC L15: U1+L14 Scaler OCC L16: W1+P1+T1 +Stear L17: L16-L2 Algebraic L19: W1+P1+T1 +Stear L20: L19+L2 Algebraic L21: L1+L20 Scaler OCC L22: W1+P1+T1 +Stear L23: L12+L2 Algebraic L24: L1+L23 Scaler OCC L25: W1+P1+T1 +Stear L25: W1+P1+T1 +Stear L27: L14: L25: L24: Algebraic L27: L14: L25: L24: L24: L24: L24: L24: L24: L24: L24	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc. 2 Stress mc(+Z) Disp, Force, etc. 2 Stress	
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		TA					137:114:11 Scalar Su5 137: W1+P1+T1 +Seal 134: 134.2 Agebraic 135: 114:14 Scalar OCC 135: 114:14 Scalar OCC 136: W1+P1+T1 +Seal 137: 136-12 Algebraic 137: 136-12 Algebraic 137: 134.2 Algebraic 137: 134.2 Algebraic 137: 134.2 Algebraic 137: 114:23 Scalar OCC 125: W1+P1+T1 +Sean 126: 125-12 Algebraic 127: 114:26 Scalar OCC 128: W1+P1+T1 +Sean 126: 125-12 Algebraic	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc. 2 Stress mc(+Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Porce, etc.	
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A					12:114.11 Scalar SUS 13:114.14 Scalar OCC 13:114.14 Scalar OCC 13:114.14 Scalar OCC 13:114.14 Scalar OCC 13:114.14 Scalar OCC 13:114.17 Scalar OCC 13:114.17 Scalar OCC 13:114.17 Scalar OCC 12:114.12 Scalar OCC 12:114.12 Scalar OCC 12:114.14 C2 Scalar OCC 12:114.14 C2 Scalar OCC 12:114.14 C2 Scalar OCC 12:114.14 Scalar OCC 13:114 Scalar OCC 14:114 Scalar OCC 14:	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc. 2 Stress mc(+Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc.	
					A State A State A		J.A.					12:114.11 Scalar Su5 13:114.11 Scalar Su5 14:1134.2 Algebraic 14:1134.2 Algebraic 15:114.14 Scalar OCO 14:114.14 Scalar OCO 14:114.17 Scalar OCO 14:114.17 Scalar OCO 14:114.17 Scalar OCO 14:114.17 Scalar OCO 14:114.17 Scalar OCO 14:114.17 Scalar OCO 12:114.14.20 Scalar OCO 12:114.14.23 Scalar OCO 12:114.14.23 Scalar OCO 12:114.14.25 Scalar OCO 12:114.14.26 Scalar OCO 12:114.14.29 Scalar OCO 12:114.14.29 Scalar OCO 12:114.14.29 Scalar OCO 12:114.14.29 Scalar OCO 12:114.14.29 Scalar OCO 13:114.29 Scalar OCO 14:114.29 Scalar OCO	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(+Z) Disp, Force, etc. 2 Stress mc(+Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc. 3 Stress	
MEN AN PARA					「「「いい」」という		JA			T J		12:114.11 Scalar Sus 13:114:1134.2 Algebraic 14:1134.2 Algebraic 15:114.14 Scalar OCO 15:114.14 Scalar OCO 15:114.17 Scalar OCO 11:114.17 Scalar OCO 11:114.17 Scalar OCO 12:114.17 Scalar OCO 12:114.17 Scalar OCO 12:114.17 Scalar OCO 12:114.14.23 Scalar OCO 12:114.14.23 Scalar OCO 12:114.14.25 Scalar OCO 12:114.26 Scalar OCO 13:114.24 Algebraic 13:114.26 Scalar OCO 13:114.26 Scalar OCO 13:114.27 Scalar OCO 14:12 Scalar OCO 14:12 Scalar OCO 14:12 Scalar OCO 14:14 Scalar OCO	Stress mc(+X) Disp, Force, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(+Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc.	
W MENTER W					PLANN PSA	THE PARTY	J.A.			A JJJ		13: W1+P1+T1 +Stear SUS 13: W1+P1+T1 +Stear 14: 134.2 Algebraic 15: 114.14 Scolar OCC 15: W1+P1+T1 +Stear 17: 156-12 Algebraic 13: W1+P1+T1 +Stear 10: 134.2 Algebraic 12: W1+P1+T1 +Stear 12: 114-L20 Scalar OCC 12: W1+P1+T1 +Stear 12: 122-12 Algebraic 12: W1+P1+T1 +Stear 12: 12: 122-12 Algebraic 12: W1+P1+T1 +Stear 12: 12: 12: 42 Algebraic 12: W1+P1+T1 +Stear 12: 12: 42 Algebraic 12: 11: 44.29 Scolar OCC 13: 11: 44.49 Scolar OCC 14: 12: 12: 12: 12: 12: 12: 12: 12: 12: 12	Stress mc(+X) Disp, Porce, etc. 2 Stress mc(-X) Disp, Force, etc. 2 Stress mc(+Y) Disp, Force, etc. 2 Stress mc(-Y) Disp, Force, etc. 2 Stress mc(+Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc. 2 Stress mc(-Z) Disp, Force, etc.	

PASS/Start-Prof | Features

Different operating modes can have different:

- Temperatures 1-∞
- Pressures 1-∞
- Fluid weight 1-∞
- Restraint displacements 1-∞
- Forces and moments, uniform loads 1-∞
- Insulation layers and density, weight 1- ∞
- No limit on pressure, temperature, etc. number
- No limit on operation mode number
- Load cases created automatically

PIPING AND EQUIPMEN

ANALYSIS & SIZING SUIT

 Interactive reports are compiled automatically for all operating modes

Full scope of the needed interactive reports after analysis

• Reports can be copied to MS Excel

- Reports can be exported into MS Word
 - Free Viewer is Available You can send your piping model to customer, who can open it using viewer and review piping model and all analysis results

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

PASS/Start-Prof | Features

Function 'Copy Whole Model'.

Allows to copy whole piping model as an object into clipboard. After that you can insert this interactive model into any other software like MS WORD, EXCEL etc.

You can rotate, pan zoom the model right inside MS Word

You can add interactive into report in MS Word and send to your customer for review

a			Start-Prof E	unom 2017 v.64.8	R2 - Tramfar 3	6-80 ASME ETT.	Lotp - Load on Restracts and Emponents			10 H								
File Edit	iew Service A	nalysis Os	tput Window H	elp				Ø			START	PROF D4.82 R	- ISTARTLetp - De	giacement)				
0.000	a.4 mm		X 28 (1 - 1 -	NUMBER OF		-	In the state of the state	Ein Edt View Service	Analysis Ogt	put Window Help								_ # ×
1.00 at 100 at		1	CRIME B			- 10-			888	ANDINO	1. Man mide	0		× 4.39	A 10	B H 4 + 3	001	
	Contraction of the second							20300-50	0 0 0 0	0.5.2.4.6.16	n	BAC:	2 09.07 120		10	-	100	
H input	d Loads	6 Augusta					Report Tax	Properties 8 ×	Direct	Died (D)								
1 Hain' (I)		Operation			Globa	dam N	Anchor fixed). Skiling +	Breita	Operating Mode	Submer Co	de			Choose Avia	Type Filter	Object Filter		
1 Note Number	Time	Energy alor	no constinute aux d	of Monarty a	aund contex C au	To the second		The state	1 Man mode'	- Opena	tion			Global avm	- Linear	 At nodes 	- 7	12
Pappe mumber	Obe.	X	V 2	gr/ memants at X	V Ppe	or local and		El Main	Node Numbe	r Type	Displaceme	nt along coon	inate exit. (mm)	Poe local antihorony	a second s			
2.Console	Anchor (fixed)	0.10	0 -1151	29 0	-575458.38	0.01		Share Divide 1 1	1000000000	0.000	X	Y	2	Pipe local arts				
3,Restrained	Anchor (fixed)	567378.30	0 -325	50 0.	-54294.99	0		End Nade 2	1	Anchor (fixed)	0	0	0					
4,Restrained	Anchor (fixed)	-567378.30	0 -325	10 O	54295.04	0		Name	2	Welding Tee	1	-1,1	-0.4					1
5,8end	Anchor (fixed)	3760.00	\$56.90 -554	50 -10066.75	-186026.99	-235113.50		Input Type Projections	1	Single-direction Guide	E 0,1	0	0					
7,8end	Anchor (fixed)	13603.30	-5447.70 -1294	60 -302600.69	9588.95	-1653202.63		III Projections/a 3000 mm, 0 mm,		Forged Elbow	2.8	1.0	1.3					
9	Anchor (fixed)	-3902.60	2185.80 -72	75899.34	237117,89	209446.28		田 Diameter x Tr 219.1 mm X 8.18		Forged Elbow	0.7	-4.9	0.3					
	Anchor (fixed)	3281.60	-131 -440	-83200.50	114312.74	54583.24		Pipe Material 20	9	Sliding Support	0.1	-4	0					1.1
	Sealing support	-/1.00	151.55 456	0 0	31/65.56	12000.28		Mill Tolerance 12:50	10	Anchor (fixed)	0	Ó	0					
17	Anchor (fixed)	156.90	247.60 -422	233566.41	- 22029-33	14142.05		Conception Rev 1 MPa	12	Spring Hanger	1	1.3	1,4					1.1
10	Anchor Hund	1110	181.20 -240	116.506.55	-70208-11	76716-48		Test Pressure 1.5 MPa	and the second second				-					1.1
21	Anchor (fixed)	-13362.30	2155.90 -543	-55819.34	112108.12	407517.56		Operating Te 100 °C										
				7. 1	1.000			E Uniform West Yes, 0.4167975 N										
								E Additional										
								Longitudinal 1.00										1
		. г.						Circumfesent 1.00										
		- F	Restr	amu	LOG	Ias		B Additional Lo 0 N/mm, 0 N/me					Dicn	lacom	ontc			
													JISP	Iacenn	EIILS			
																		12
																		100 B
Error and warrie																		
Ence and warne	g mesoges	Teur	CALMERT /					-										
Ninter	Node #	Des (MC)	Copuon 65 Failed the stress of	hark from overse	a and mainly los	de (1. Main')		Enter and warming messages										
PADIES			AD Extend the second	had form	a and wright ins	and in manual		Type Node/pine Descript	en.									Help III
Notes	Mone 1	042	op) raded the stress of	Neck from pressur	e anit weight loa	de (), Youn)		Warning Node:3 (W622) (lap is not consid	ered in the analysis, since	it is too small							2
Notes	Nictie	(N2	04) Failed the fatigue	strength check (1	Main')			Warning Node2 Tax lang	th must be prest	ar than 0	0.460.00120.000							
Notes	Nosell	042	84) Failed the fatigue	strength check (1	'Main')			Minutes Node 7 Outputs	hummer free and	at nine baster may cause	analysis is see	unaries if in fa	t the niceline cost	near belowed this point				
Notes	Notes	(142	68) Failed the stress o	heck in operation	condition (1. %)	ain')		warming recters (wood) t	hanning nee and	as pipe borber may caute	analysis indec	anacies e mita	a me piperne cont	wars organization point				-1
Notes	Nodell	042	68) Failed the stress a	heck in operation	condition (1. 'M	ain')		(DVb62) 1	sumper of degre	es or meedom 13								1.1
170.00		_	-															and the second se
Popes sat 2	Error and warmin	g messages						Pipes list 26 Error and warning r	messages									
ция справки нажи	TR.F1							для справки нажимите F1								10.625-11		NUM

- Stress report show all used equations
- You can add/remove stress from axial force
- Activate individual features for each pipe stress code
- Cells where the check fails has a red color
- Messages about stress check fail duplicated in the errors and warning window

CPASS

0	Eile Edit Y	Dew Service An	alysis Oytput	Window	Help				-		-				
1	S 19 18		1 10 E X	0.0		A 9			2 DD 2	FIGT-107.3	1 13 +	10.8	222		1 2 4
1	< 9 4 4 4	2 3 10 10 10	조 명 명 12	< - 2											
	Perpet	Stress G													
	operating Mode	5	quantision Range wer	Mode	→ Øs	ow Equalit	ns 🗌 Se	ess Range from	Operation to Colo	Course of the					
	1 Main' (0) Maximum	1	'Man' (0) (Cold Stat	6)	. 20	rep Stress	2			2					
	1 Man (C)						Stress range	(ligf/sq.cm)	Sustained	with creep	Sustained	with creep	Notes		
	2 '000 (2)	_				aq.cm)			coperating sta	es? (edu ed-rud)	(COID State)	7 Terito advenuto			
	3 Test model (1)		_	-	-	Sh	Se	54	Sloreep	Sh, creep	Screep	Sh, creep			
	Abeve	e ground pipe	1,Console	187.82	187.82	853.30	0	2458.05	187.52	1406.53	187.82	1768.51			
1	1.000		2,Console	2998.54	3998.54	853.30	0	1708.18	1998.53	1436.53	3996.54	1766.51	1,2,7,8,9,10		
	Above	e ground pipe	4.Restrained	494.99	472.22	853.30	14077.98	2150.88	19959.70	1406.13	359.55	1768.31	7,8		
		Norwoo Nethio	3,Reithained	494.99	472.22	853.30	14077.98	2150.88	19958.70	\$406.53	339.55	3768.51	7,8		
	For	rged Elbow	6,0 Flange	1043.3	Methode 14	kal/sa ce	-	1204.15	2414.02	1044.00	1049.41	1768.51	1,2,3,7,8		
	Above	e ground pipe	fi,0 Flange	703.3	Pare Diame	ter(Do) 21	9 mm				706.01	1768.51	7,8		
	/		24	646.32	Thicknessit	1.6 mm	E SIDW				648.07	1768.51			
	/	Joint	24	846.55	(x			tione T)			648.34	1768.51			
1	Above	e ground pipe	24	646.3	Me=76213.	155 kgf-cm	, M=8016.81	95 kgl-cm, M	tz-8836.0137 kg	f-cm	648.07	1768.51			
			22	352.52	Bending m	oment (M	b=(()i*Mi)*2+	(ie*Me)^2)^(0.5), 163194.94 k	gf-cm	353.30	1768.51			
	Eccer	ntric Reducer	22	407	Asial force	F), 5545.3	7 kgf			1000	407,28	1768.51			
	Above	e ground pipe	22	407	Area (A), 35	25 sq.mm					407.29	1768.51			
			-23	425.35	Flexibility ()	0, 0.161					929.33	1768.51	1,2,7,8		
	Conce	entric Reducer	23	N25.2	Flexibility Factor (k), 9.690							1768.51	1,2,7,8		
1	Above	e ground pipe	23	.627.54	SF ion 2.3	10, ii= 2.84	4, it= 1.000				629.84	1768.51			
			5,Bend	1341.7	Morrvent of	resistance	(Z), 183986.3	144 cub.mm		and the second	1345.04	1768.51	1,2,7,8		
1	For	rged Elbrow	6,0 Flange	1045.2	Pressure the	nast stress	(5p=P*(Do-2)	t)^2/(De^2-(D	No-2t)^2]), 134.1	1 kgf/sq.cm	1049,41	1768.51	1,2,3,7,8		
	Above	e ground pipe	10 Flange	351.38	g Bending stress (Se=2.75°1*Mb(2), 827 kg/sq.cm g Axial stress (Se=FA), 157.30 kgf/sq.cm Torsion shuar stress (St=0.75°1*Mt/22), -23.99 kgf/sq.cm St=15541≤561°2+22°56°21°0.5, 1045.39 kaf/sq.cm						552.69	1768.51	7,8		
			8	600.35							614.07	1768.51	7,8		
	We	elding Tee	8	1183.7							1208.19	1768.51	1,2,3,7,8		
	Above	é grouind pipe	.8	473.99	bretilzel+2	a)~2+(2*3	0.51-02/30	49.59 kg//bq.c	m		484.39	1768.51			
			25	432.12	Man (1771	125.1-4	m Adv. apply	R239 kel car i	M- 47206 4721	al con	440.75	1768.51	7,8		
	Non-s	tandard bend	25	700.37	Bending m	oment (M	bellinter and	(io*Mo)^2)^/	1.53 126948.11 6	of-cm	709.99 1768.51	1768.51	3,7,6		
	Above	e ground pipe	25	480.45	Avial force (F), 5507.32 kcf							1768.51	7,8		
7 F	mor and warning	o messabes			Bending str	ess (Sb=0.	75"rMb/Z), 6	ilia.aa kgf/sq.e	UNIV	F					
E	Ture	Blodefuine	Description	-	Anial stress	(Se=F/A),	156.22 kgf/sq	µcm.		-				bisis	10
-	Alerter	Node Pipe	(BC265) Ex2rd	d the ct	Torsion she	er stress (S	Stw0.75*i*Mt/	22), -128.57 k	at/ad-cm					rsep	
	AUGUES	and the second	(NOTION FOR	a tree to	SL=[[]5a[+5	b)+2+(2+5	4)~2]^0.5, 88	4,41 kgf/rq.cn	1					1	
	Notes	Noder	(74263) Faile	d the st	(*******		Sec	bone 3)						1	
	Notes	Nodel	(N284) Faile	d the fa	Mos-7213.	1192 kgf-c	m, Min 3519.9	247 kgf-cm, N	tt=74859.697 kg	ficm				2	
F	Notes	Finder8	(%4284) Faile	d the fa	Bending m	orment (M	8=(0/M0*2+	()e"Mo)^2)*(1.3), 16610.29 kg	r.cm				1	
	Notes	Nodes	(74268) Faile	d the st	Assai force	PL 2397.3	(Ngt	A THE REAL OF THE	2					7	
ŀ	Notes	Node	(NDSE) Faile	d the st	Avial street	East (Spoil)	152 10 bod/or	or the solution of the						1.1	
					-tran stream	(merrie)	Contraction and		Electron and					1000	

PASS/START-PROF has smart warnings in error checker.

It show all engineering warnings like support is lifting off, support loads are greater than allowable, expansion joint deformation exceed the limits, buckling analysis failed, flange leakage failed, spring hanger variable range greater than 25%, spring load in one of load cases is greater than allowable, rod rotation exceed the limit and many others.

PASS/Start-Prof | Features

Change of the model units available at any moment of time on-the-fly, <u>even after analysis is done</u>.

The units are always displayed for each input field.

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

PASS/Start-Prof | Features

- Each piping system project is stored in just one file
- Thumbnails for windows explorer. You can preview all piping models right in the explorer before opening the file
- Fast opening even big models
- High speed of stress analysis and working with a really big models

PASS/Start-Prof | Reliability

Full Verification and Validation manual. Added a lot of verification examples, compared to manual calculations and other software.

Each new PASS/START-PROF release is:

- Automatically verified on more than 300 examples with previous versions (quality assurance system)
- Checked manually with group of pipe stress experts (testers)
- Each release pass through 1-3 pipe stress trainings with 10-20 students before official release
- After release, all bugs reported by our 2000 companies active users are quickly fixed and new release is provided

PASS/Start-Prof | Licensing

Configurations/Pricing Options

PASS/Start-Prof Complete Advanced

Simulation and sizing for any piping network considering all applicable national codes.

PASS/Start-Prof Complete Standard

configuration includes only worldwide popular standarts.

PASS/Start-Prof Process Advanced

Simulation and sizing for piping networks based on applicable national codes for process plants as well as for gas and oil transportation systems.

PASS/Start-Prof Process Standard

configuration includes only worldwide popular standarts.

PASS/START-PROF PASS/Start-Prof Power Advanced HDPE+FRP Simulation and sizing for any Piping stress analysis of high density polyethylene and/or piping networks based on applicable national codes for fiberglass reinforced plastic power generation piping as piping systems. well as for central heating networks.

PASS/Start-Prof Power Standard

configuration includes only worldwide popular standarts.

Permanent License at Affordable Price (+1 year maintenance for free!)

- Maintenance Renew 1 Year: 25%
- Annual License: 40%
- Semi-Annual License: 25%

Complete Standard Process Standard HOPE+FRP **Power Standard** Code Complete Process Power Advanced Advanced (40% discount) (40% discount) (40% discount) (40% discount) Advanced ISO 14692 4 0 **HDPE Piping** 4 4 4 ASME B31.1 ~ 4 V 4 ASME B31.3 ¥. V v 4 v ~ ASME B31.4 V 4 ASME B31.5 ¥. V. ~ 4 \mathbf{v} ¥. ASME B31.8 4 V v 4 V. 4 ¥. 4 ¥. ASME B31.9 ~ EN 13480 v V V 4 4 4 4 4 GB 50316 4 1 2 4 V 4 4 G8/T 20801 4 4 GB 50251 4 4 4 4 4 4 GB 50253 4 4 4 1 DL/T 5366 ~ 4 CUJ/T 81 4 4 RD 10-249-98 ~ 4 **GOST R 55596** GOST 32388 4 4 1 SNIP 2.05.06-1 85 SP 36.13330 ~ 4

Configurations Comparison

PASS/Start-Prof | Resources

Subscribe to our Social Media to Learn More!

- Web site: <u>www.passuite.com</u>
- YouTube Channel: <u>www.youtube.com/passuite</u>
- LinkedIn: www.linkedin.com/company/passuite/
- Facebook: <u>www.facebook.com/PASSuite</u>
- Twitter: <u>twitter.com/passuitecom</u>
- More than 50 articles about pipe stress analysis and PASS/START-PROF features <u>https://whatispiping.com/category/start-prof</u>

PASS/Start-Prof | Resources

- Online Help: https://www.passuite.com/kbase/doc/start//WebHelp_en/index.htm
- VPASS Start-Prof 4.84R1 User's Guide

Q	
Temperature Cycles	/DACC
Valve	VPASS START-PROF
Marker	Read about START-PROF pipe stress analysis software
Pipe Elements	Dump ADI 610 / ISO 13700
Bends	Fump AFI 010 / 150 15/09
Tees and Stub-Ins	
Reducers	
Expansion Joints	
Restraints	
 Equipment. 	
Pressure Vessels, Columns WRC 107/5 Storage Tank API 650 Pump API 610 Pump ISO 9905 Pump ISO 5199 Other Pump In-line Pump API 610 Compressor API 617/API 619 Turbine NEMA SM 23/API 611/API 612 Fired Heater API 560 Air Cooled Heat Exchanger API 661 Loads Nodal Deformations (Cold Spring)	This element allows to model the pumps and check the loads according to API 610 / ISO 13709 standards. One "Pump" object can be connected to one or two nodes. Allowable loads are checked for each individual nozzle and for whole pump. Analysis results can be found in Loads on Nozzles and Equipment Table. See also "How to Reduce the Nozzle Loads in START-PROF" There can be two options of using pump element: 1. Put Pump nozzles into the pipe end nodes. In this case, the pump nozzles are automatically modeled as an anchors. Pump temperature expansions are automatically modeled as anchor movements. There is the function of the pipe end nodes. In this case, the pump nozzles are automatically modeled as an anchors. Pump temperature expansions are automatically modeled as anchor movements.
Destraint Movement and Potation	Prive Control Studie Trans Nation 742 •
Seismic Anchor Movement	
Flaw	Remove Transmith for Hanger Scherbart Dart Remove 1
Plane Flaw	Line the Villeton
Volumetric Flaw	
nalvsis Results	
Stress in Piping	Uningshim
Stress in Insulation	78 + Ister + I.I.SerLande
Stress in Flaw	

PASS/Start-Prof | Resources

Subscribe our YouTube channel, you will find a lot of PASS/START-PROF training videos

www.youtube.com/passuite

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE P: +7 495 225 94 32 E: sales@passuite.com E: support@passuite.com W: www.passuite.com

Thank YOU!